
Theory of Fluid Dynamics Part 7: The maths of 2 
dimensional line source. 

 
We now look at the maths involved in describing the flow for a 2-dimensional line source. 
As for the axisymmetric case, we consider an incompressible, irrotational (inviscid) fluid.  
This case of a 2-dimensional line source is of interest if we wish to determine the flow 
behaviour over an airfoil of infinite span. This is not as silly as it sounds, as all wing 
section data for lift and drag are presented for infinite aspect ratio airfoils (wings). To 
make these data useful for a given wing, the aspect ratio must known and plugged into the 
appropriate formulae.  
 
Unfortunately, the results for the velocities are very messy, which probably explains why 
they are not in the text books I use! This also means I may have made a mistake 
somewhere in all this algebra, so readers are cordially invited to point out any errors I may 
have made. The casual reader may find the following of no interest, but I need the stream 
function and its concomitant velocities to analyse the lift of a wing section in a later article. 
 
First we recall that the stream function Ψ for a point source is given by: 
 
     Ψ = -mθ 
 
Where m is the source strength and θ is the angle subtended from the source to the point of 
interest in the flow field. That is as clear as mud so here is a diagram.  
 
 

 
 
The stream function for a line source can be considered to be made up of lots of small 
point sources, of the type above, all joined together. This time we will call the strength of 
the line source mφ, where φ is the length from 0 to φ. See figure 2 
 



 
 
Using the notation in Figure 3 for the lines OP, QP and AP, we can write the stream 
function Ψ as: 
                       a 
  Ψ = (1/a) ∫ mφθdθ   
                                  0   

     
                 
Noting that: 
 
  d(cotθ)/dθ = 1/sin2θ 
 
and 
          ф = x – ycotθ 
       dф = (y/sin2θ)dθ 
we have: 
                                θ2 
  Ψ = (1/a)∫ (mφyθ/sin2θ).dθ 
    θ1 



Upon evaluating the integral we have: 
 

Ψ = (my/a) [θ1/tanθ1 – θ2/tanθ2 + ln│sinθ2/ sinθ1│] 
 
Which is the polar form of the [2]’al line source stream function we seek. 
 
For computing purposes, its nice to rewrite this stream function in cartesian coordinates, 
when the first term in the [] braces becomes: 
 
  θ1/tanθ1 – θ2/tanθ2 = (x/y)tan-1(y/x) – ((x-a)/y)tan-1(y/(x-a)) 
 
and the second: 
 
  ln│sinθ2/ sinθ1│ =  ½.ln│(x2 + y2)/( y2 + [x – a]2)│ 
 
which just for fun is      =  ln(OP/AP) 

 
Now things are looking good. By selecting a value of Ψ we can draw the streamline for 
that constant value of Ψ. The streamline gives the direction of flow from the line source. 
However, it does not give the velocity of the flow along the streamline: certainly the 
velocity is not constant along the streamline. 
So why worry? Well, those velocities tell us the pressure in the fluid: if the fluid is passing 
over the surface of a solid, say a wing, then that pressure gives us the force acting on the 
wing, also known as lift! 
So now we need to find the velocities. If u is the velocity component along the x-axis 
(abcissa), and v, the velocity  component along the y-axis (ordinate), we have from 
previous studies that: 
  
  u = -∂Ψ/∂y       and   v = ∂Ψ/∂x        
 
Now this gets pretty messy. We need to write Ψ in cartesian coordinates to carry out these 
partial derivatives. This is what I reckon Ψ looks like. 
 
 Ψ = (mx/a)tan-1(y/x) – (m(x-a)/a)tan-1(y/(x-a)) + (my/(2a)) ln│(x2 + y2)/( y2 + [x – 
a]2)│      
 
Then  
 
     u = -∂Ψ/∂y 
 
        = -mx2/(a(x2 + y2)) + (m/a)(x-a)2/[(x-a)2 + y2] + (m/a)[-(1/2)ln│(x2 + y2) │ 
 
                   - y2/(x2 + y2)] + (m/a)[(1/2)ln│((x-a)2 + y2) │+ y2/[y2+(x-a)2] 
and 
 
     v = ∂Ψ/∂x        
 
        = (m/a){-xy/(x2+y2) + tan-1(y/x)} + (m/a)[2y(x-a)/{(x-a)2+y2)} - tan-1(y/(x-a))]   
 
                  + (myx)/{a(x2 + y2)} – {my(x-a)}/{a[y2 + (x-a)2]} 



 
 

 
 

No doubt these expressions are reducible, but not my me. My computer won’t quibble 
about how neat these expressions appear. Whatever, now we need some code to see if 
these formula give a sensible looking result. 
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