
Theory of Fluid Dynamics Part 6: The maths of axisymmetric flow.

We now look at the maths involved in describing axisymmetric flow for an

incompressible, irrotational (inviscid) fluid. Such a fluid is like water, in which

case the topic is called Hydrodynamics. But we will pretend that air also is

incompressible, in which case the topic is called Aerodynamics. The intention

is to provide the equations used for the previous article, Part 5, which describe

the flow of air around the nose of an axisymmetric airplane.

 The type of maths concerned is called calculus, a subject which is understood

by about .0001% of the Worlds population. I will make no effort to explain the

calculus, unless I have a neurological fit and realise that I might understand

some of it myself!

We first need an equation, which describes a uniform flow of air parallel to the

abcissa (x-axis) in our rectilinear coordinate system. The stream function Ψ1

represents the volume flow rate of such a uniform stream. It is a number, for

example, we can write:

Ψ1 = 50 litres per second for air flowing past a given area of space.

This is not very general. We really want to include some extra features, such as the

velocity of the flow and the area of space of interest to our problem. Here it is:

 Ψ1 = -Ur
2
sin

2
θ /2

 = -Uy
2
/2

Here, U is the velocity of the uniform stream (think ‘wind’ or ‘airspeed’) along the

abcissa. It has no other components, and represents a number, such as 50 metres per

second. The other symbols are given in the diagram below, and “sin” is the

trigonometric function, not something norty.

Now we need a “source” of fluid. In the previous work, the source was a point that

injected fluid, into space, in a radial fashion, like the spokes on a bicycle wheel. This

time, we will go for something more elegant. A point source injecting into an

axisymmetric space will yield too blunt a representation of the aircraft spinner,

although it could be good for the radial cowl of, say, a Sea Fury. We can get the both

of both worlds by using the stream function for an axisymmetric line source. By

making the line source short, we can get a blunt shape, and by making it long we can

get a more pointy shape! If this is confusing, remember that we are going to combine

the stream functions for a uniform stream and various sources, and even negative

sources, which are called “sinks”. The flow in sinks is reversed, flowing not out, but

into the source. The mind boggles!

Here is the equation for the stream function of an axisymmetric line source Ψ2

 Ψ2 = m(PO –PA)/a

It doesn’t get much better than this! We have:

 PO = (x
2
 + y

2
)
 1/2

 PA = [(x-a)
2
 + y

2
]

 1/2

Here, m is the strength of the source, and a is its length. Check the diagram below.

Now we have our free stream and line source stream functions, we are allowed to add

them.

 Ψ = Ψ1 + Ψ2

 = -Uy
2
/2 + m(Po – Pa)/a

 = -Uy
2
/2 + m[(x

2
 + y

2
)
1/2

 - {(x-a)
2
 + y

2
}

1/2
]/a

As this is a linear theory, we could have written in some more stream functions, say n,

viz:

Ψ = Ψ1 + Ψ2 + Ψ3 + ….+ Ψn

Now this is really neat. With enough stream functions, we could create any shape we

want! Well, maybe. Being mere mortals, we will end up using just 4 to get a good

enough result for engineering purposes. Ie, within 20%. Don’t let anyone tell you

engineering isn’t rough!

Just for the moment, we will get results for one line source only.

What we are now after are the velocity components at any point on any streamline.

Lets call these u on the abcissa and v on the ordinate (x and y axes respectively).

Then a result from the theory is this:

 u = -(∂Ψ/∂y)/y

 v = -(∂Ψ/∂x)/y

Carrying out these partial derivatives yield:

 u = -U-m(x
2
+y

2
)

-1/2
/a + m[(x-a)

2
+y

2
]

-1/2
/a

v = mx(x
2
+y

2
)
-1/2

/(ay) – m(x-a)[(x-a)
2
+y

2
]

-1/2
/(ay)

 Finally, it is useful to know the stagnation point. In the axisymmetric case, this

occurs where u = 0 (reasonable, the stagnation point is defined as the point where

there is no flow in the x-direction) and y = 0 (ie, on the axis of rotation of the

axisymmetric body).

Then from our equation for u, with u = 0 and y = 0, we have:

 U = - m(x
2
)
-1/2

/a + m[(x-a)
2
]

-1/2
/a

 = m/(x(x-a))

If we have more than 1 line source, say n, the relations below hold:

 u = u1 + u2 +…+ un

 v = v1 + v2 +…+ vn

I leave it to the reader to prove that these stream functions are irrotational. The

required condition is given below.

 ∂
2
Ψ/ ∂x

2
 + ∂

2
Ψ/ ∂y

2
= 0

Finally, I append my Quick Basic code for you fellow dinosaurs out there still running

DOS, or even WIN98, which look better and better to me as each day of Windows

Vista passes.

To recap, we set out to get the inflow field to a propeller, as affected by the presence

of the spinner and cowl. This permits a correction to the blade angle, which is

determined by the local axial velocity.

Regrettably, I need to point out some apparent errors elsewhere. In “Fundamentals of

Fluid Mechanics”, Editions 1 and 2, by Gerhart and Gross, equations 9.36 and 9.37

are wrong. In “Teach Yourself Calculus”, by Abbott, page 122 (section 78), the

differential symbols are missing for the subjects arcsin(x/a), arctan(x/a) and

arcsec(x/a).

Appendix: Quick Basic source code for axisymmetric flow.

 ' Source in Uniform Stream Milne-Thompson p456

10/4/2009

 ' Axial symmetry 3-dimensional case ... CFD by

Supercool

 ' n line sources: Milne Thompson formula

 ' Uniform stream flow over a spinner/nose/fuselage

 ' Code is Quick Basic

 DIM psi(30), x(10, 1200), y(10, 1200) ' set up arrays

 DIM r(2000), p(2000), xx(1200), yy(1200), Uu(20), Vv(20)

 SCREEN 9, , 1, 1: pi = 4 * ATN(1): rtd = 180 / pi: dtr = pi /

180

 scl = 220 ' centimetres across screen

 WINDOW (-.1 * scl, -.3 * scl)-(.9 * scl, .3 * scl)

 ' Set input parameter values

 U = 900 ' velocity of uniform stream (cm/second)

 ' (same thing as airspeed)

 ' spinner source parameters

 m(1) = 7000 ' source strength (cubic

metres/stearadian)

 a(1) = 5 ' length of line source (cm)

 offset(1) = 2 ' offset of source from origin (cm)

 ' cowl source parameters

 m(2) = 150000

 a(2) = .1

 offset(2) = 30

 ' pinch spinner/cowl source parameters

 m(3) = -90000

 a(3) = 30

 offset(3) = 30

 ' rear fuselage source parameters

 m(4) = -110000

 a(4) = 200

 offset(4) = 70

 ' select sources to be represented

 startp = 1 ' Start at source startp

 stopp = 4 ' Finish at source stopp, in sequence

 xprop = 20 ' location of prop behind stagnation point

 propdia = 63.5 ' cm

 ' find values of psi (flux) for streamlines at -infinity

 ' these streamlines are for the uniform flow with zero source

strength

 ' they are chosen to give even vertical spacing of the initial

streamlines

 dely = 5 ' spacing of initial

streamlines in cm

 FOR n = 0 TO 10

 psi(n) = -.5 * U * (n * dely) ^ 2 ' [3]'al flux for

streamline n

 NEXT n ' n * dely is height

above fluid axis, cm

 ' plot free-stream streamlines

 ' FOR n = 0 TO 12: LINE (-10, n * dely)-(30, n * dely), 3:

NEXT n

 ' draw line sources

 g = 0

 FOR p = startp TO stopp

 g = g + .03: COLOR 4: IF m(p) < 0 THEN COLOR 2

 LINE (offset(p), -g)-(a(p) + offset(p), g), , BF

 NEXT p

 ' stagnation point

 FOR x = -10 + .07 TO 20 STEP .1

 Uu = -U ' freestream velocity U

 FOR p = startp TO stopp

 GOSUB Uu ' source axial

velocities

 Uu = Uu + uq ' total axial velocity

 NEXT p

 IF Uu > 0 THEN GOTO ss ' near enough to

stagnation point

 NEXT x

ss: LINE (x, -.3)-(x, .3), 9

 xstag = x

 ' dividing streamline occurs at psi = -Sm(p)

 psi = 0

 FOR p = startp TO stopp

 psi = psi - m(p)

 NEXT p

 j = 0

 FOR x = xstag TO xstag + 260 STEP .25

 FOR y = 0 TO 25 STEP .25

 dum = psi + .5 * U * y ^ 2 ' test

inequality value

 dump = 0

 FOR p = startp TO stopp

 GOSUB linesource

 dump = dump + psiline ' line source stream

function

 NEXT p

 IF dump < dum THEN GOTO 114

 NEXT y

114 j = j + 1: xx(j) = x: yy(j) = y

 LINE -(x, y)

 NEXT x

 jj = j

 FOR i = 2 TO jj

 IF x = xx(i - 1) THEN GOTO 115

 LINE (xx(i - 1), yy(i - 1))-(xx(i), yy(i)), 4

 LINE (xx(i - 1), -yy(i - 1))-(xx(i), -yy(i)), 4

 NEXT i

115

 ' fill in nose shape

 FOR k = 1 TO jj - 1

 ' IF x = xx(k - 1) THEN GOTO 117

 LINE (xx(k), yy(k))-(xx(k + 1), 0), 10, BF

 LINE (xx(k), -yy(k))-(xx(k + 1), 0), 10, BF

 NEXT k

117

 ' draw source, origin

tt:

 LINE (0, -.1)-(a(p), .1), 4, BF ' draw source

 LINE (-.3, -.3)-(.3, .3), 12 ' mark origin, x

= 0

 LINE (-.3, .3)-(.3, -.3), 12

 ' draw prop

 xp = xstag + xprop

 LINE (xp - 2, 0)-(xp - 1, propdia / 2), 9

 LINE (xp + 2, 0)-(xp + 1, propdia / 2), 9

 LINE (xp - 1, propdia / 2)-(xp + 1, propdia / 2), 9

 LINE (xp - 2, 0)-(xp + 2, 0), 9

 PAINT (xp, propdia / 4), 2, 9

 LINE (xp - 2, 0)-(xp - 1, -propdia / 2), 9

 LINE (xp + 2, 0)-(xp + 1, -propdia / 2), 9

 LINE (xp - 1, -propdia / 2)-(xp + 1, -propdia / 2), 9

 LINE (xp - 2, 0)-(xp + 2, 0), 9

 PAINT (xp, -propdia / 4), 2, 9

 ' draw cm scale, centred at prop

 LINE (xp, -35)-(xp, 35), 12

 FOR j = -35 TO 35 STEP 5

 LINE (xp, j)-(xp + 1, j), 12

 NEXT j

 ' Get axial velocities u at cm stations, location x = xprop

 x = xprop: i = 0

 FOR y = 15 TO 30 STEP 5 ' cm stations along

prop

 i = i + 1: yy(i) = y

 dum1 = 0: dum2 = 0

 FOR p = startp TO stopp

 GOSUB velocity

 dum1 = dum1 + uq: dum2 = dum2 + vq ' line-source

integraton for u

 NEXT p

 Uu = dum1 + U

 Vv = dum2

 Uu(i) = Uu ' total axial velocity

 Vv(i) = Vv ' " radial "

 Vstream(i) = SQR(Uu(i) ^ 2 + Vv(i) ^ 2)

 NEXT y

 ' draw line source

 g = 0

 FOR p = startp TO stopp

 g = g + .04: COLOR 4: IF m(p) < 0 THEN COLOR 2

 LINE (offset(p), -g)-(a(p) + offset(p), g), , BF

 NEXT p

 k = i

 FOR i = 1 TO k

 LOCATE i + 2, 36: COLOR 12

 PRINT USING "## ####.# ####.# ####.# ##.## "; yy(i);

Uu(i); Vv(i); Vstream(i); Uu(i) / U

 NEXT i

 LOCATE 1, 36: COLOR 10: PRINT "cm Uaxial Vradial Wlocal

Vratio"

 COLOR 2

 LOCATE 3, 5: PRINT USING " Prop diameter (mm) ###.#";

propdia * 10

 LOCATE 4, 5: PRINT USING " Free stream vel (m/s) ###.#"; U

/ 10

 LOCATE 2, 5: COLOR 12: PRINT "Sea Fury"

 LOCATE 22, 8: PRINT "Axisymmetric representation of a Sea

Fury fuselage"

 ' draw desired spinner

 xs(1) = 0: ys(1) = 0

 xs(2) = 4: ys(2) = 4

 xs(3) = 10: ys(3) = 7

 xs(4) = 20: ys(4) = 10

 FOR i = 2 TO 4

 LINE (xs(i - 1) + xstag, ys(i - 1))-(xs(i) + xstag, ys(i))

 LINE (xs(i - 1) + xstag, -ys(i - 1))-(xs(i) + xstag, -

ys(i))

 NEXT i

 ' mark cowling edges as circles

 Rc = 6: Jc = xprop + 10: Kc = 35.6 / 2 - Rc: jj = -1:

GOSUB circ

 Rc = 6: Jc = xprop + 10: Kc = -35.6 / 2 + Rc: jj = 1:

GOSUB circ

 ' compute stream lines for axial symmetry

 nlines = 5

 FOR n = 0 TO nlines STEP 1 ' each n is a

new streamline

 k = 0: stepp = .4

 FOR x = 300 TO -100 STEP -stepp

 FOR y = .01 TO 10000 STEP stepp

 psi = -.5 * U * y ^ 2 ' free stream, axial

symmetry

 FOR p = startp TO stopp

 GOSUB linesource

 psi = psi + psiline ' free stream +

sources

 NEXT p

 IF psi > psi(n) THEN GOTO 5 ELSE GOTO 10

5 NEXT y

10 k = k + 1

 x(n, k) = x ' cordinates of

streamline

 y(n, k) = y

 NEXT x

 endk = k - 1 ' counter for points on

streamline

 NEXT n ' next streamline

 ' plot streamlines on screen

 FOR n = 1 TO nlines

 FOR k = 2 TO endk

 COLOR 14: LINE (x(n, k - 1), y(n, (k - 1)))-(x(n, k),

y(n, k))

 LINE (x(n, k - 1), -y(n, (k - 1)))-(x(n, k), -y(n,

k))

 NEXT k

 NEXT n

 COLOR 0

 END

linesource: ' line source stream function

 ' a = length of source

 ' m = strength of source

 ' po = SQR(x ^ 2 + y ^ 2)

 ' pa = SQR((x - a) ^ 2 + y ^ 2)

 ' psi = m / a * (po - pa)

 mmq = m(p) / a(p) ' line source strength

 xq = x - offset(p)

 po = SQR(xq ^ 2 + y ^ 2)

 pa = SQR((xq - a(p)) ^ 2 + y ^ 2)

 psiline = mmq * (po - pa)

 RETURN

Uu: ' compute axial velocity at distance x from source on axis

 ' for getting the stagnation point

 mmq = m(p) / a(p) ' individual source

strength

 xq = x - offset(p)

 po = SQR(xq ^ 2 + y ^ 2)

 pa = SQR((xq - a(p)) ^ 2 + y ^ 2)

 xq = x - offset(p)

 uq = -mmq / xq + mmq / (xq - a(p))

 RETURN

velocity: ' compute axial and transverse velocities

 ' at distance x,y from source

 mmq = m(p) / a(p) ' individual source strength

 xq = x - offset(p)

 po = SQR(xq ^ 2 + y ^ 2)

 pa = SQR((xq - a(p)) ^ 2 + y ^ 2)

 dum11 = 1 / SQR(xq ^ 2 + y ^ 2)

 dum22 = 1 / SQR((xq - a(p)) ^ 2 + y ^ 2)

 uq = -mmq * dum11 + mmq * dum22

 vq = mmq * dum11 * xq / y - mmq * dum22 * (xq - a(p)) / y

 RETURN

circ: ' True circular-arc subroutine

 ' scl = .74

 ' xmin = -7: xmax = 7

 ' ymin = xmin * scl: ymax = xmax * scl

 ' WINDOW (xmin, ymin)-(xmax, ymax)

 ' COLOR 14

 ' Rc = 5 / 2: Jc = 0: Kc = 0: jj = -1: GOSUB circ

 ' jj = 1: GOSUB circ

 IF Rc < .00001 THEN RETURN

 xoff = 100: yoff = 100 ' offsets to avoid -ve

sq. roots

 xleft = xoff - Rc: xright = xoff + Rc ' limits x

 ylower = yoff - Rc: yupper = yoff + Rc ' limits y

 LINE (xleft - xoff + Jc, Kc)-(xleft - xoff + Jc, Kc)

 FOR ec = xleft TO xright STEP (xright - xleft) / 100

 IF ABS(ec - xoff) > ABS(Rc) THEN 2221

 yyc = SQR(Rc ^ 2 - (ec - xoff) ^ 2)

 xxc = ec - xoff

 LINE -(xxc + Jc, -yyc * jj + Kc)

2221 NEXT ec

 LINE -(xright - xoff + Jc, Kc)

 RETURN

